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1
UNIT – 1 Electrostatics - I

Electromagnetic theory is a discipline concerned with the study of charges at rest and in 
motion. Electromagnetic principles are fundamental to the study of electrical engineering 
and physics. Electromagnetic theory is also indispensable to the understanding, analysis 
and design of various electrical, electromechanical and electronic systems. Some of the 

branches of study where electromagnetic principles find application are:
RF communication, Microwave Engineering, Antennas, Electrical Machines, Satellite 

Communication, Atomic and nuclear research ,Radar Technology, Remote sensing, EMI 
EMC, Quantum Electronics, VLSI ,

Electromagnetic theory is a prerequisite for a wide spectrum of studies in the field of 
Electrical Sciences and Physics. Electromagnetic theory can be thought of as 
generalization of circuit theory. There are certain situations that can be handled 
exclusively in terms of field theory. In electromagnetic theory, the quantities involved 
can be categorized as source quantities and field quantities. Source of electromagnetic 
field is electric charges: either at rest or in motion. However an electromagnetic field may 
cause a redistribution of charges that in turn change the field and hence the separation of 
cause and effect is not always visible. 

Sources of EMF:
 Current carrying conductors.
 Mobile phones.
 Microwave oven.
 Computer and Television screen. 
 High voltage Power lines.

Effects of Electromagnetic fields:
 Plants and Animals.
 Humans.
 Electrical components.

Fields are classified as
 Scalar field
 Vector field.

Electric charge is a fundamental property of matter. Charge exist only in positive or 
negative integral multiple of electronic charge, -e, e= 1.60 × 10-19 coulombs. [It may be 
noted here that in 1962, Murray Gell-Mann hypothesized Quarks as the basic building 
blocks of matters. Quarks were predicted to carry a fraction of electronic charge and the 
existence of Quarks have been experimentally verified.] Principle of conservation of 
charge states that the total charge (algebraic sum of positive and negative charges) of an 
isolated system remains unchanged, though the charges may redistribute under the 
influence of electric field. Kirchhoff's Current Law (KCL) is an assertion of the 
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conservative property of charges under the implicit assumption that there is no 
accumulation of charge at the junction.

Electromagnetic theory deals directly with the electric and magnetic field vectors where 
as circuit theory deals with the voltages and currents. Voltages and currents are integrated 
effects of electric and magnetic fields respectively. Electromagnetic field problems 
involve three space variables along with the time variable and hence the solution tends to 
become correspondingly complex. Vector analysis is a mathematical tool with which 
electromagnetic concepts are more conveniently expressed and best comprehended. Since 
use of vector analysis in the study of electromagnetic field theory results in real economy 
of time and thought, we first introduce the concept of vector analysis. 

Vector Analysis: 

The quantities that we deal in electromagnetic theory may be either scalar or vectors
[There are other class of physical quantities called Tensors: where magnitude and 
direction vary with co ordinate axes]. Scalars are quantities characterized by magnitude 
only and algebraic sign. A quantity that has direction as well as magnitude is called a 
vector. Both scalar and vector quantities are function of time and position . A field is a 
function that specifies a particular quantity everywhere in a region. Depending upon the 
nature of the quantity under consideration, the field may be a vector or a scalar field. 
Example of scalar field is the electric potential in a region while electric or magnetic 
fields at any point is the example of vector field. 

A vector can be written as, , where, is the magnitude and is the 

unit vector which has unit magnitude and same direction as that of . 

Two vector and are added together to give another vector . We have 

................(1.1) 

Let us see the animations in the next pages for the addition of two vectors, which has two 
rules: 1: Parallelogram law and 2: Head & tail rule 
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Scaling of a vector is defined as , where is scaled version of vector and is a 
scalar. 
Some important laws of vector algebra are: 

                                 Commutative Law..........................................(1.3)

              Associative Law.............................................(1.4)

                    Distributive Law ............................................(1.5) 

The position vector of a point P is the directed distance from the origin (O) to P, i.e., 

= .

Fig 1.3: Distance Vector
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7If = OP and = OQ are the position vectors of the points P and Q then the distance 
vector 

Product of Vectors 

When two vectors and are multiplied, the result is either a scalar or a vector 
depending how the two vectors were multiplied. The two types of vector multiplication 
are: 

Scalar product (or dot product) gives a scalar.

Vector product (or cross product) gives a vector.

The dot product between two vectors is defined as = |A||B|cosθAB ..................(1.6) 

Vector product 

is unit vector perpendicular to and

Fig 1.4: Vector dot product

The dot product is commutative i.e., and distributive i.e., 

. Associative law does not apply to scalar product. 

The vector or cross product of two vectors and is denoted by . is a vector 

perpendicular to the plane containing and , the magnitude is given by
and direction is given by right hand rule as explained in Figure 1.5.
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Next

............................................................................................(1.7)

where is the unit vector given by, .

The following relations hold for vector product.

=                               i.e., cross product is non commutative ..........(1.8)

        i.e., cross product is distributive.......................(1.9)

           i.e., cross product is non associative..............(1.10)
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Scalar and vector triple product :

Scalar triple product .................................(1.11)

Vector triple product     ...................................(1.12)

Co-ordinate Systems 

In order to describe the spatial variations of the quantities, we require using appropriate 
co-ordinate system. A point or vector can be represented in a curvilinear coordinate 
system that may be orthogonal or non-orthogonal . 

An orthogonal system is one in which the co-ordinates are mutually perpendicular. Non-
orthogonal co-ordinate systems are also possible, but their usage is very limited in 
practice .

Let u = constant, v = constant and w = constant represent surfaces in a coordinate system, 

the surfaces may be curved surfaces in general. Furthur, let , and be the unit 
vectors in the three coordinate directions(base vectors). In a general right handed 
orthogonal curvilinear systems, the vectors satisfy the following relations :

.....................................(1.13)

These equations are not independent and specification of one will automatically imply the 
other two. Furthermore, the following relations hold 

................(1.14)
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A vector can be represented as sum of its orthogonal 

components, ...................(1.15) 
In general u, v and w may not represent length. We multiply u, v and w by conversion 

factors h1,h2 and h3 respectively to convert differential changes du, dv and dw to 
corresponding changes in length dl1, dl2, and dl3. Therefore 

...............(1.16)

In the same manner, differential volume dv can be written as and 

differential area ds1 normal to is given by, . In the same manner, 

differential areas normal to unit vectors and can be defined.

In the following sections we discuss three most commonly used orthogonal co-
ordinate systems, viz: 

1. Cartesian (or rectangular) co-ordinate system 

2. Cylindrical co-ordinate system 

3. Spherical polar co-ordinate system 

Cartesian Co-ordinate System : 

In Cartesian co-ordinate system, we have, (u,v,w) = (x,y,z). A point P(x0, y0, z0) in 
Cartesian co-ordinate system is represented as intersection of three planes x = x0, y = y0

and z = z0. The unit vectors satisfies the following relation:
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In cartesian co-ordinate system, a vector can be written as . 

The dot and cross product of two vectors and can be written as follows:

                                                                       .................(1.19)

    
             ....................(1.20)

Since x, y and z all represent lengths, h1= h2= h3=1. The differential length, area and 
volume are defined respectively as 

................(1.21)

.................................(1.22)

Cylindrical Co-ordinate System : 

For cylindrical coordinate systems we have a point is 
determined as the point of intersection of a cylindrical surface r = r0, half plane 
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12containing the z-axis and making an angle ; with the xz plane and a plane parallel 
to xy plane located at z=z0 as shown in figure 7 on next page.

In cylindrical coordinate system, the unit vectors satisfy the following relations 

A vector can be written as , ...........................(1.24)

The differential length is defined as,

......................(1.25)

.....................(1.23)
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Transformation between Cartesian and Cylindrical coordinates: 

Let us consider is to be expressed in Cartesian co-ordinate as 

. In doing so we note that 
and it applies for other components as well. 
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These relations can be put conveniently in the matrix form as:

.....................(1.30)

themselves may be functions of as:

............................(1.31)

The inverse relationships are:     ........................(1.32)
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Fig 1.10: Spherical Polar Coordinate System

Thus we see that a vector in one coordinate system is transformed to another coordinate 
system through two-step process: Finding the component vectors and then variable 
transformation. 

Spherical Polar Coordinates: 

For spherical polar coordinate system, we have, . A point is 
represented as the intersection of 

(i) Spherical surface r=r0

(ii) Conical surface ,and 

(iii) half plane containing z-axis making angle with the xz plane as shown in the 
figure 1.10.

The unit vectors satisfy the following relationships:  
.....................................(1.33)

The orientation of the unit vectors are shown in the figure 1.11. 
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A vector in spherical polar co-ordinates is written as : and 

For spherical polar coordinate system we have h1=1, h2= r and h3= .
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Fig 1.12(b) : Exploded view 

With reference to the Figure 1.12, the elemental areas are:

.......................(1.34)

and elementary volume is given by

                                                         ........................(1.35)

Coordinate transformation between rectangular and spherical polar:

With reference to the figure 1.13 ,we can write the following equations:
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........................................................(1.36)

Given a vector in the spherical polar coordinate system, its 
component in the cartesian coordinate system can be found out as follows:

.................................(1.37) 
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Similarly,

.................................(1.38a)

                                .................................(1.38b)

The above equation can be put in a compact form:

   .................................(1.39)

The components themselves will be functions of . are 
related to x,y and z as: 

....................(1.40)

and conversely,

.......................................(1.41a)

.................................(1.41b)

.....................................................(1.41c)

Using the variable transformation listed above, the vector components, which are 
functions of variables of one coordinate system, can be transformed to functions of 
variables of other coordinate system and a total transformation can be done. 

Line, surface and volume integrals 

In electromagnetic theory, we come across integrals, which contain vector functions. 
Some representative integrals are listed below: 
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In the above integrals, and respectively represent vector and scalar function of space 
coordinates. C,S and V represent path, surface and volume of integration. All these 
integrals are evaluated using extension of the usual one-dimensional integral as the limit 
of a sum, i.e., if a function f(x) is defined over arrange a to b of values of x, then the 
integral is given by 

.................................(1.42)

where the interval (a,b) is subdivided into n continuous interval of lengths .

Line Integral: Line integral is the dot product of a vector with a specified C; in 

other words it is the integral of the tangential component along the curve C. 

As shown in the figure 1.14, given a vector around C, we define the integral 

as the line integral of E along the curve C. 

If the path of integration is a closed path as shown in the figure the line integral becomes 

a closed line integral and is called the circulation of around C and denoted as as 
shown in the figure 1.15.
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Fig 1.15: Closed Line Integral 

Surface Integral :

Given a vector field , continuous in a region containing the smooth surface S, we 

define the surface integral or the flux of through S as 

as surface integral over surface S.

Fig 1.16 : Surface Integral

If the surface integral is carried out over a closed surface, then we write 

Volume Integrals:
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22We define or as the volume integral of the scalar function f(function of 

spatial coordinates) over the volume V. Evaluation of integral of the form can be 
carried out as a sum of three scalar volume integrals, where each scalar volume integral is 

a component of the vector

The Del Operator : 

The vector differential operator was introduced by Sir W. R. Hamilton and later on 
developed by P. G. Tait. 

Mathematically the vector differential operator can be written in the general form as: 

                      .................................(1.43)

Gradient of a Scalar function: 

In Cartesian coordinates: 

                  ................................................(1.44) 

In cylindrical coordinates: 

                 ...........................................(1.45)

and in spherical polar coordinates: 

                 .................................(1.46)

Let us consider a scalar field V(u,v,w) , a function of space coordinates. 

Gradient of the scalar field V is a vector that represents both the magnitude and direction 
of the maximum space rate of increase of this scalar field V. 
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Fig 1.17 : Gradient of a scalar function 

As shown in figure 1.17, let us consider two surfaces S1and S2 where the function V has 
constant magnitude and the magnitude differs by a small amount dV. Now as one moves 
from S1 to S2, the magnitude of spatial rate of change of V i.e. dV/dl depends on the 
direction of elementary path length dl, the maximum occurs when one traverses from S1to 
S2along a path normal to the surfaces as in this case the distance is minimum.

By our definition of gradient we can write: 

                                       
.......................................................................(1.47)

since which represents the distance along the normal is the shortest distance between 
the two surfaces. 

For a general curvilinear coordinate system 

                                   
....................(1.48)

Further we can write 

                                     
......................................................(1.49)

Hence,
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24  ....................................(1.50)

Also we can write,

............................(1.51)

By comparison we can write,

....................................................................(1.52)

Hence for the Cartesian, cylindrical and spherical polar coordinate system, the 
expressions for gradient can be written as: 
In Cartesian coordinates:

...................................................................................(1.53)

In cylindrical coordinates: 

..................................................................(1.54)

and in spherical polar coordinates: 

..........................................................(1.55)

The following relationships hold for gradient operator.
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...............................................................................(1.56)

where U and V are scalar functions and n is an integer. 

It may further be noted that since magnitude of depends on the direction of 

dl, it is called the directional derivative. If is called the scalar potential 

function of the vector function . 

Divergence of a Vector Field: 

In study of vector fields, directed line segments, also called flux lines or streamlines, 
represent field variations graphically. The intensity of the field is proportional to the 
density of lines. For example, the number of flux lines passing through a unit surface S 
normal to the vector measures the vector field strength.

Fig 1.18: Flux Lines 

We have already defined flux of a vector field as 

....................................................(1.57)

For a volume enclosed by a surface, 

.........................................................................................(1.58)

We define the divergence of a vector field at a point P as the net outward flux from a 
volume enclosing P, as the volume shrinks to zero. 
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.................................................................(1.59)

Here is the volume that encloses P and S is the corresponding closed surface.

Fig 1.19: Evaluation of divergence in curvilinear coordinate

Let us consider a differential volume centered on point P(u,v,w) in a vector field . The 
flux through an elementary area normal to u is given by ,

........................................(1.60)

Net outward flux along u can be calculated considering the two elementary surfaces perpendicular to u .

.......................................(1.61)
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Considering the contribution from all six surfaces that enclose the volume, we can write 

.......................................(1.62) 

Hence for the Cartesian, cylindrical and spherical polar coordinate system, the expressions for divergence can be 
written as: 

In Cartesian coordinates: 

................................(1.63)

In cylindrical coordinates:

....................................................................(1.64)

and in spherical polar coordinates: 

......................................(1.65)

In connection with the divergence of a vector field, the following can be noted 

 Divergence of a vector field gives a scalar. 

 ..............................................................................(1.66) 

Divergence theorem :
Divergence theorem states that the volume integral of the divergence of vector field is 
equal to the net outward flux of the vector through the closed surface that bounds the 

volume. Mathematically, 
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Proof: 

Let us consider a volume V enclosed by a surface S . Let us subdivide the volume in large 

number of cells. Let the kth cell has a volume and the corresponding surface is 
denoted by Sk. Interior to the volume, cells have common surfaces. Outward flux through 
these common surfaces from one cell becomes the inward flux for the neighboring cells. 
Therefore when the total flux from these cells are considered, we actually get the net 
outward flux through the surface surrounding the volume. Hence we can write: 

......................................(1.67)

In the limit, that is when and the right hand of the expression can be 

written as .

Hence we get , which is the divergence theorem. 

Curl of a vector field:

We have defined the circulation of a vector field A around a closed path as .

Curl of a vector field is a measure of the vector field's tendency to rotate about a point. 

Curl , also written as is defined as a vector whose magnitude is maximum of the 
net circulation per unit area when the area tends to zero and its direction is the normal 
direction to the area when the area is oriented in such a way so as to make the circulation 
maximum. 

Therefore, we can write:

......................................(1.68)

To derive the expression for curl in generalized curvilinear coordinate system, we first 

compute and to do so let us consider the figure 1.20 : 
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Fig 1.20: Curl of a Vector 

C1 represents the boundary of , then we can write 

......................................(1.69)
The integrals on the RHS can be evaluated as follows: 

.................................(1.70)

................................................(1.71)

The negative sign is because of the fact that the direction of traversal reverses. Similarly, 

..................................................(1.72)

............................................................................(1.73)

Adding the contribution from all components, we can write: 

........................................................................(1.74)

Therefore, ........................(1.75)
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30In the same manner if we compute for and we can write,

.......(1.76)

This can be written as,

......................................................(1.77)

In Cartesian coordinates: .......................................(1.78)

In Cylindrical coordinates, ....................................(1.79)

In Spherical polar coordinates, ..............(1.80)

Curl operation exhibits the following properties:

..............(1.81)
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Stoke's theorem :

It states that the circulation of a vector field around a closed path is equal to the 

integral of over the surface bounded by this path. It may be noted that this equality 

holds provided and are continuous on the surface. 

i.e,

                                                       ..............(1.82)

Proof:Let us consider an area S that is subdivided into large number of cells as shown in 
the figure 1.21.

Fig 1.21: Stokes theorem 

Let kthcell has surface area and is bounded path Lk while the total area is bounded by 
path L. As seen from the figure that if we evaluate the sum of the line integrals around the 
elementary areas, there is cancellation along every interior path and we are left the line 
integral along path L. Therefore we can write, 

   ..............(1.83)

As 0 
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which is the stoke's theorem. 

ASSIGNMENT PROBLEMS

1. In the Cartesian coordinate system; verify the following relations for a scalar

function and a vector function 

a.

b.

c.

2. An electric field expressed in spherical polar coordinates is given by . 

Determine and at a point . 

3. Evaluate over the surface of a sphere of radius centered at the 
origin. 

4. Find the divergence of the radial vector field given by . 

5. A vector function is defined by . Find around the 

contour shown in the figure P1.3 . Evaluate over the shaded area and 

verify that 

http://learnengineering.in


33
Figure P1.3 

In the previous chapter we have covered the essential mathematical tools needed to study 
EM fields. We have already mentioned in the previous chapter that electric charge is a 
fundamental property of matter and charge exist in integral multiple of electronic charge. 
Electrostatics can be defined as the study of electric charges at rest. Electric fields have their 
sources in electric charges. 

( Note: Almost all real electric fields vary to some extent with time. However, for many 
problems, the field variation is slow and the field may be considered as static. For some 
other cases spatial distribution is nearly same as for the static case even though the actual 
field may vary with time. Such cases are termed as quasi-static.) 

In this chapter we first study two fundamental laws governing the electrostatic fields, viz, (1) 
Coulomb's Law and (2) Gauss's Law. Both these law have experimental basis. Coulomb's 
law is applicable in finding electric field due to any charge distribution, Gauss's law is easier 
to use when the distribution is symmetrical. 

Coulomb's Law 

Coulomb's Law states that the force between two point charges Q1and Q2 is directly 
proportional to the product of the charges and inversely proportional to the square of the 
distance between them. 

Point charge is a hypothetical charge located at a single point in space. It is an idealised 
model of a particle having an electric charge. 

Mathematically, ,where k is the proportionality constant. 

In SI units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters.

Force F is in Newtons (N) and , is called the permittivity of free space. 

(We are assuming the charges are in free space. If the charges are any other dielectric 

medium, we will use instead where is called the relative permittivity or the 
dielectric constant of the medium).

Therefore .......................(2.1)
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As shown in the Figure 2.1 let the position vectors of the point charges Q1and Q2 are given 

by and . Let represent the force on Q1 due to charge Q2. 

Fig 2.1: Coulomb's Law

The charges are separated by a distance of . We define the unit vectors 
as 

and ..................................(2.2)

can be defined as . Similarly the force on Q1 due to 

charge Q2 can be calculated and if represents this force then we can write

When we have a number of point charges, to determine the force on a particular charge due 
to all other charges, we apply principle of superposition. If we have N number of charges

Q1,Q2,.........QN located respectively at the points represented by the position vectors ,

,...... , the force experienced by a charge Q located at is given by, 

.................................(2.3)

Electric Field 

The electric field intensity or the electric field strength at a point is defined as the force per 
unit charge. That is 

or, .......................................(2.4)
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The electric field intensity E at a point r (observation point) due a point charge Q located at

(source point) is given by: 

..........................................(2.5)

For a collection of N point charges Q1 ,Q2 ,.........QN located at , ,...... , the electric field 

intensity at point is obtained as

........................................(2.6)

The expression (2.6) can be modified suitably to compute the electric filed due to a 
continuous distribution of charges. 

In figure 2.2 we consider a continuous volume distribution of charge (t) in the region 
denoted as the source region. 

For an elementary charge , i.e. considering this charge as point charge, we 
can write the field expression as: 

.............(2.7)

Fig 2.2: Continuous Volume Distribution of Charge

When this expression is integrated over the source region, we get the electric field at the 
point P due to this distribution of charges. Thus the expression for the electric field at P can 
be written as: 
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..........................................(2.8)

Similar technique can be adopted when the charge distribution is in the form of a line charge 
density or a surface charge density. 

........................................(2.9)

........................................(2.10)

Electric flux density: 

As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the field 
at a particular point. The electric field depends on the material media in which the field is 
being considered. The flux density vector is defined to be independent of the material media 
(as we'll see that it relates to the charge that is producing it).For a linear 
                                                             

isotropic medium under consideration; the flux density vector is defined as:  

................................................(2.11)

We define the electric flux � as

.....................................(2.12)

Gauss's Law: Gauss's law is one of the fundamental laws of electromagnetism and it states 
that the total electric flux through a closed surface is equal to the total charge enclosed by 
the surface. 
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         Fig 2.3: Gauss's Law

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric 

constant . The flux density at a distance r on a surface enclosing the charge is given by 

...............................................(2.13)

If we consider an elementary area ds, the amount of flux passing through the elementary 
area is given by 

.....................................(2.14)

But , is the elementary solid angle subtended by the area at the location of

Q. Therefore we can write 

For a closed surface enclosing the charge, we can write 

which can seen to be same as what we have stated in the definition of Gauss's Law. 

Application of Gauss's Law 

Gauss's law is particularly useful in computing or where the charge distribution has 
some symmetry. We shall illustrate the application of Gauss's Law with some examples. 

1.An infinite line charge 

As the first example of illustration of use of Gauss's law, let consider the problem of 
determination of the electric field produced by an infinite line charge of density LC/m. Let us 
consider a line charge positioned along the z-axis as shown in Fig. 2.4(a) (next slide). Since 
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the line charge is assumed to be infinitely long, the electric field will be of the form as shown 
in Fig. 2.4(b) (next slide). 

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we 
can write, 

.....................................(2.15)

Considering the fact that the unit normal vector to areas S1 and S3 are perpendicular to the 
electric field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence 

we can write, 

Fig 2.4: Infinite Line Charge 

.....................................(2.16)

http://learnengineering.in


39
2. Infinite Sheet of Charge 

As a second example of application of Gauss's theorem, we consider an infinite charged 
sheet covering the x-z plane as shown in figure 2.5.

Assuming a surface charge density of for the infinite surface charge, if we consider a 

cylindrical volume having sides placed symmetrically as shown in figure 5, we can write: 

..............(2.17)

Fig 2.5: Infinite Sheet of Charge

It may be noted that the electric field strength is independent of distance. This is true for the 
infinite plane of charge; electric lines of force on either side of the charge will be 
perpendicular to the sheet and extend to infinity as parallel lines. As number of lines of force 
per unit area gives the strength of the field, the field becomes independent of distance. For a 
finite charge sheet, the field will be a function of distance. 

3. Uniformly Charged Sphere 

Let us consider a sphere of radius r0 having a uniform volume charge density of �v C/m3. To 

determine everywhere, inside and outside the sphere, we construct Gaussian surfaces of 
radius r < r0 and r > r0 as shown in Fig. 2.6 (a) and Fig. 2.6(b). 
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.........................(2.18)

Fig 2.6: Uniformly Charged Sphere

By applying Gauss's theorem, 

...............(2.19)

Therefore

...............................................(2.20)

For the region ; the total enclosed charge will be 

....................................................................(2.21)

By applying Gauss's theorem, 

.....................................................(2.22)

*************************************************************************************************
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Unit II Electrostatics-II

In this chapter we will discuss on the followings:

• Electrostatic Potential, Equipotential Surfaces 

• Boundary Conditions for Static Electric Fields 

• Capacitance and Capacitors 

• Electrostatic Energy 

• Laplace's and Poisson's Equations 

• Uniqueness of Electrostatic Solutions 

• Method of Images 

• Solution of Boundary Value Problems in Different Coordinate Systems

Electrostatic Potential and Equipotential Surfaces 
In the previous sections we have seen how the electric field intensity due to a charge or a charge 
distribution can be found using Coulomb's law or Gauss's law. Since a charge placed in the vicinity of 
another charge (or in other words in the field of other charge) experiences a force, the movement of 
the charge represents energy exchange. Electrostatic potential is related to the work done in carrying 
a charge from one point to the other in the presence of an electric field. 
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Let us suppose that we wish to move a positive test charge from a point P to another 
point Q as shown in the Fig. 2.8.

The force at any point along its path would cause the particle to accelerate and move it out of 
the region if unconstrained. Since we are dealing with an electrostatic case, a force equal to 

the negative of that acting on the charge is to be applied while moves from P to Q. The 

work done by this external agent in moving the charge by a distance is given by: 

.............................(2.23)

Fig 2.8: Movement of Test Charge in Electric Field 

The negative sign accounts for the fact that work is done on the system by the external 
agent. 

.....................................(2.24)

The potential difference between two points P and Q , VPQ, is defined as the work done per 
unit charge, i.e. 

...............................(2.25)

It may be noted that in moving a charge from the initial point to the final point if the potential 
difference is positive, there is a gain in potential energy in the movement, external agent 
performs the work against the field. If the sign of the potential difference is negative, work is 
done by the field. 
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Let us consider a point charge Q as shown in the Fig. 2.9. 

Fig 2.9: Electrostatic Potential calculation for a point charge

Further consider the two points A and B as shown in the Fig. 2.9. Considering the movement 
of a unit positive test charge from B to A , we can write an expression for the potential 
difference as: 

..................................(2.26)

It is customary to choose the potential to be zero at infinity. Thus potential at any point ( rA = 
r) due to a point charge Q can be written as the amount of work done in bringing a unit 
positive charge from infinity to that point (i.e. rB = 0). 

..................................(2.27)

Or, in other words,

We will see that the electrostatic system is conservative in that no net energy is exchanged if 
the test charge is moved about a closed path, i.e. returning to its initial position. Further, the 
potential difference between two points in an electrostatic field is a point function; it is 
independent of the path taken. The potential difference is measured in Joules/Coulomb 
which is referred to as Volts. 
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..................................(2.28)

Let us now consider a situation where the point charge Q is not located at the origin as 
shown in Fig. 2.10. 

Fig 2.10: Electrostatic Potential due a Displaced Charge 

The potential at a point P becomes 

..................................(2.29)

So far we have considered the potential due to point charges only. As any other type of 
charge distribution can be considered to be consisting of point charges, the same basic 
ideas now can be extended to other types of charge distribution also. 

Let us first consider N point charges Q1, Q2,.....QN located at points with position vectors

, ,...... . The potential at a point having position vector can be written as:

..................................(2.30a)

or, ...........................................................(2.30b)

For continuous charge distribution, we replace point charges Qn by corresponding charge 

elements or or depending on whether the charge distribution is linear, 
surface or a volume charge distribution and the summation is replaced by an integral. With 
these modifications we can write:
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For line charge, ..................................(2.31)

For surface charge, .................................(2.32)

For volume charge, .................................(2.33)

It may be noted here that the primed coordinates represent the source coordinates and the 
unprimed coordinates represent field point. 

Further, in our discussion so far we have used the reference or zero potential at infinity. If 
any other point is chosen as reference, we can write: 

.................................(2.34)

where C is a constant. In the same manner when potential is computed from a known electric 
field we can write: 

.................................(2.35)

The potential difference is however independent of the choice of reference. 

.......................(2.36)

We have mentioned that electrostatic field is a conservative field; the work done in moving a 
charge from one point to the other is independent of the path. Let us consider moving a 
charge from point P1 to P2 in one path and then from point P2 back to P1 over a different path. 
If the work done on the two paths were different, a net positive or negative amount of work 
would have been done when the body returns to its original position P1. In a conservative 
field there is no mechanism for dissipating energy corresponding to any positive work neither 
any source is present from which energy could be absorbed in the case of negative work. 
Hence the question of different works in two paths is untenable, the work must have to be 
independent of path and depends on the initial and final positions. 

Since the potential difference is independent of the paths taken, VAB = - VBA , and over a 
closed path,

.................................(2.37)
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Applying Stokes's theorem, we can write: 

............................(2.38)

from which it follows that for electrostatic field, 

........................................(2.39)

Any vector field that satisfies is called an irrotational field. 

From our definition of potential, we can write 

.................................(2.40)

from which we obtain, 

..........................................(2.41)

From the foregoing discussions we observe that the electric field strength at any point is the 

negative of the potential gradient at any point, negative sign shows that is directed from 

higher to lower values of . This gives us another method of computing the electric field, i. 
e. if we know the potential function, the electric field may be computed. We may note here 

that that one scalar function contain all the information that three components of carry, 

the same is possible because of the fact that three components of are interrelated by the 

relation . 

Example: Electric Dipole 

An electric dipole consists of two point charges of equal magnitude but of opposite sign and 
separated by a small distance. 

As shown in figure 2.11, the dipole is formed by the two point charges Q and -Q separated by 
a distance d , the charges being placed symmetrically about the origin. Let us consider a 
point P at a distance r, where we are interested to find the field. 
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Fig 2.11 : Electric Dipole

The potential at P due to the dipole can be written as: 

..........................(2.42)

When r1 and r2>>d, we can write and . 

Therefore,

....................................................(2.43)

We can write,

...............................................(2.44)

The quantity is called the dipole moment of the electric dipole.

Hence the expression for the electric potential can now be written as: 

................................(2.45)

It may be noted that while potential of an isolated charge varies with distance as 1/r that of 
an electric dipole varies as 1/r2 with distance.
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If the dipole is not centered at the origin, but the dipole center lies at , the expression for 
the potential can be written as: 

........................(2.46)

The electric field for the dipole centered at the origin can be computed as 

........................(2.47)

is the magnitude of the dipole moment. Once again we note that the electric field of 
electric dipole varies as 1/r3 where as that of a point charge varies as 1/r2.

Equipotential Surfaces

An equipotential surface refers to a surface where the potential is constant. The intersection 
of an equipotential surface with an plane surface results into a path called an equipotential 
line. No work is done in moving a charge from one point to the other along an equipotential 
line or surface. 

In figure 2.12, the dashes lines show the equipotential lines for a positive point charge. By 
symmetry, the equipotential surfaces are spherical surfaces and the equipotential lines are 
circles. The solid lines show the flux lines or electric lines of force. 
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Fig 2.12: Equipotential Lines for a Positive Point Charge

Michael Faraday as a way of visualizing electric fields introduced flux lines. It may be seen 
that the electric flux lines and the equipotential lines are normal to each other. 

In order to plot the equipotential lines for an electric dipole, we observe that for a given Q and d, a 

constant V requires that is a constant. From this we can write to be the 
equation for an equipotential surface and a family of surfaces can be generated for various 
values of cv.When plotted in 2-D this would give equipotential lines. 

To determine the equation for the electric field lines, we note that field lines represent the 

direction of in space. Therefore, 

, k is a constant .................................................................(2.48)

.................(2.49)

For the dipole under consideration =0 , and therefore we can write,

.........................................................(2.50)

Integrating the above expression we get , which gives the equations for electric 
flux lines. The representative plot ( cv = c assumed) of equipotential lines and flux lines for a 
dipole is shown in fig 2.13. Blue lines represent equipotential, red lines represent field lines. 
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Fig 2.13: Equipotential Lines and Flux Lines for a Dipole

Boundary conditions for Electrostatic fields 

In our discussions so far we have considered the existence of electric field in the homogeneous 
medium. Practical electromagnetic problems often involve media with different physical properties.
Determination of electric field for such problems requires the knowledge of the relations of field 
quantities at an interface between two media. The conditions that the fields must satisfy at the 
interface of two different media are referred to as boundary conditions . 

In order to discuss the boundary conditions, we first consider the field behavior in some 
common material media. 

In general, based on the electric properties, materials can be classified into three categories: 
conductors, semiconductors and insulators (dielectrics). In conductor , electrons in the 
outermost shells of the atoms are very loosely held and they migrate easily from one atom to 
the other. Most metals belong to this group. The electrons in the atoms of insulators or 
dielectrics remain confined to their orbits and under normal circumstances they are not 
liberated under the influence of an externally applied field. The electrical properties of 
semiconductors fall between those of conductors and insulators since semiconductors have 
very few numbers of free charges. 

The parameter conductivity is used characterizes the macroscopic electrical property of a 
material medium. The notion of conductivity is more important in dealing with the current flow 
and hence the same will be considered in detail later on. 

If some free charge is introduced inside a conductor, the charges will experience a force due 
to mutual repulsion and owing to the fact that they are free to move, the charges will appear 
on the surface. The charges will redistribute themselves in such a manner that the field 

within the conductor is zero. Therefore, under steady condition, inside a conductor .

From Gauss's theorem it follows that 

= 0 .......................(2.51)

The surface charge distribution on a conductor depends on the shape of the conductor. The 
charges on the surface of the conductor will not be in equilibrium if there is a tangential 
component of the electric field is present, which would produce movement of the charges. 
Hence under static field conditions, tangential component of the electric field on the 
conductor surface is zero. The electric field on the surface of the conductor is normal 
everywhere to the surface . Since the tangential component of electric field is zero, the 

conductor surface is an equipotential surface. As = 0 inside the conductor, the conductor 
as a whole has the same potential. We may further note that charges require a finite time to 

redistribute in a conductor. However, this time is very small sec for good conductor 
like copper. 
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Fig 2.14: Boundary Conditions for at the surface of a Conductor 
Let us now consider an interface between a conductor and free space as shown in the figure 
2.14.

Let us consider the closed path pqrsp for which we can write, 

.................................(2.52)

For and noting that inside the conductor is zero, we can write 

=0.......................................(2.53)

Et is the tangential component of the field. Therefore we find that 

Et = 0 ...........................................(2.54)

In order to determine the normal component En, the normal component of , at the surface 
of the conductor, we consider a small cylindrical Gaussian surface as shown in the Fig.12. 

Let represent the area of the top and bottom faces and represents the height of the 

cylinder. Once again, as , we approach the surface of the conductor. Since = 0 
inside the conductor is zero, 

.............(2.55)

..................(2.56)

Therefore, we can summarize the boundary conditions at the surface of a conductor as: 

Et = 0 ........................(2.57)
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.....................(2.58)

Behavior of dielectrics in static electric field: Polarization of dielectric 

Here we briefly describe the behavior of dielectrics or insulators when placed in static electric 
field. Ideal dielectrics do not contain free charges. As we know, all material media are 
composed of atoms where a positively charged nucleus (diameter ~ 10-15m) is surrounded by 
negatively charged electrons (electron cloud has radius ~ 10-10m) moving around the 
nucleus. Molecules of dielectrics are neutral macroscopically; an externally applied field 
causes small displacement of the charge particles creating small electric dipoles.These 
induced dipole moments modify electric fields both inside and outside dielectric material. 

Molecules of some dielectric materials posses permanent dipole moments even in the 
absence of an external applied field. Usually such molecules consist of two or more 
dissimilar atoms and are called polar molecules. A common example of such molecule is 
water molecule H2O. In polar molecules the atoms do not arrange themselves to make the 
net dipole moment zero. However, in the absence of an external field, the molecules arrange 
themselves in a random manner so that net dipole moment over a volume becomes zero. 
Under the influence of an applied electric field, these dipoles tend to align themselves along 
the field as shown in figure 2.15. There are some materials that can exhibit net permanent 
dipole moment even in the absence of applied field. These materials are called electrets that 
made by heating certain waxes or plastics in the presence of electric field. The applied field 
aligns the polarized molecules when the material is in the heated state and they are frozen to 
their new position when after the temperature is brought down to its normal temperatures. 
Permanent polarization remains without an externally applied field. 

As a measure of intensity of polarization, polarization vector (in C/m2) is defined as: 

  .......................(2.59)

FIGURE MISSING

Fig 2.15: Polarised Dielectric Medium

n being the number of molecules per unit volume i.e. is the dipole moment per unit 

volume. Let us now consider a dielectric material having polarization and compute the 

potential at an external point O due to an elementary dipole dv'. 
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Fig 2.16: Potential at an External Point due to an Elementary Dipole dv'.

With reference to the figure 2.16, we can write: ..........................................(2.60)

Therefore,

........................................(2.61)
........(2.62)
where x,y,z represent the coordinates of the external point O and x',y',z' are the coordinates of the 
source point. 

From the expression of R, we can verify that 

.............................................(2.63)

.........................................(2.64)

Using the vector identity, ,where f is a scalar quantity , we have,

.......................(2.65)

Converting the first volume integral of the above expression to surface integral, we can write 
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.................(2.66)

where is the outward normal from the surface element ds' of the dielectric. From the 
above expression we find that the electric potential of a polarized dielectric may be found 
from the contribution of volume and surface charge distributions having densities 

......................................................................(2.67)

......................(2.68)

These are referred to as polarisation or bound charge densities. Therefore we may replace a 
polarized dielectric by an equivalent polarization surface charge density and a polarization 
volume charge density. We recall that bound charges are those charges that are not free to 
move within the dielectric material, such charges are result of displacement that occurs on a 
molecular scale during polarization. The total bound charge on the surface is 

......................(2.69)

The charge that remains inside the surface is

......................(2.70)

The total charge in the dielectric material is zero as 

......................(2.71)

If we now consider that the dielectric region containing charge density the total volume 
charge density becomes

....................(2.72)

Since we have taken into account the effect of the bound charge density, we can write

                                                             ....................(2.73)

Using the definition of we have
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Therefore the electric flux density 

When the dielectric properties of the medium are linear and isotropic, polarisation is directly 
proportional to the applied field strength and

........................(2.75)

is the electric susceptibility of the dielectric. Therefore,

.......................(2.76)

is called relative permeability or the dielectric constant of the medium. is 
called the absolute permittivity.

A dielectric medium is said to be linear when is independent of and the medium is 

homogeneous if is also independent of space coordinates. A linear homogeneous and 
isotropic medium is called a simple medium and for such medium the relative permittivity is 
a constant.

Dielectric constant may be a function of space coordinates. For anistropic materials, the 
dielectric constant is different in different directions of the electric field, D and E are related 
by a permittivity tensor which may be written as:

.......................(2.77)

For crystals, the reference coordinates can be chosen along the principal axes, which make 
off diagonal elements of the permittivity matrix zero. Therefore, we have

.......................(2.78)

Media exhibiting such characteristics are called biaxial. Further, if then the medium is 

called uniaxial. It may be noted that for isotropic media, .
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Lossy dielectric materials are represented by a complex dielectric constant, the imaginary 
part of which provides the power loss in the medium and this is in general dependant on 
frequency.

Another phenomenon is of importance is dielectric breakdown. We observed that the 
applied electric field causes small displacement of bound charges in a dielectric material that 
results into polarization. Strong field can pull electrons completely out of the molecules. 
These electrons being accelerated under influence of electric field will collide with molecular 
lattice structure causing damage or distortion of material. For very strong fields, avalanche 
breakdown may also occur. The dielectric under such condition will become conducting.

The maximum electric field intensity a dielectric can withstand without breakdown is referred 
to as the dielectric strength of the material.

Boundary Conditions for Electrostatic Fields: 

Let us consider the relationship among the field components that exist at the interface 
between two dielectrics as shown in the figure 2.17. The permittivity of the medium 1 and 

medium 2 are and respectively and the interface may also have a net charge density 

Coulomb/m.

Fig 2.17: Boundary Conditions at the interface between two dielectrics

We can express the electric field in terms of the tangential and normal 

components ..........(2.79)

where Et and En are the tangential and normal components of the electric field respectively. 

Let us assume that the closed path is very small so that over the elemental path length the 

variation of E can be neglected. Moreover very near to the interface, . Therefore

.......................(2.80)

http://learnengineering.in


57
Thus, we have,

or i.e. the tangential component of an electric field is continuous 
across the interface.

For relating the flux density vectors on two sides of the interface we apply Gauss’s law to a 

small pillbox volume as shown in the figure. Once again as , we can write

..................(2.81a)

i.e., .................................................(2.81b)

.e., .......................(2.81c)

Thus we find that the normal component of the flux density vector D is discontinuous 
across an interface by an amount of discontinuity equal to the surface charge density 
at the interface.

Example

Two further illustrate these points; let us consider an example, which involves the refraction 
of D or E at a charge free dielectric interface as shown in the figure 2.18.

Using the relationships we have just derived, we can write

.......................(2.82a)

.......................(2.82b)

In terms of flux density vectors,

.......................(2.83a)

.......................(2.83b)

Therefore, .......................(2.84)
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Fig 2.18: Refraction of D or E at a Charge Free Dielectric Interface

Capacitance and Capacitors

We have already stated that a conductor in an electrostatic field is an Equipotential body and 
any charge given to such conductor will distribute themselves in such a manner that electric 
field inside the conductor vanishes. If an additional amount of charge is supplied to an 
isolated conductor at a given potential, this additional charge will increase the surface charge 

density . Since the potential of the conductor is given by , the potential 

of the conductor will also increase maintaining the ratio same. Thus we can write 
where the constant of proportionality C is called the capacitance of the isolated conductor. SI 
unit of capacitance is Coulomb/ Volt also called Farad denoted by F. It can It can be seen 
that if V=1, C = Q. Thus capacity of an isolated conductor can also be defined as the amount 
of charge in Coulomb required to raise the potential of the conductor by 1 Volt. 

Of considerable interest in practice is a capacitor that consists of two (or more) conductors 
carrying equal and opposite charges and separated by some dielectric media or free space. 
The conductors may have arbitrary shapes. A two-conductor capacitor is shown in figure 
2.19.
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Fig 2.19: Capacitance and Capacitors

When a d-c voltage source is connected between the conductors, a charge transfer occurs 
which results into a positive charge on one conductor and negative charge on the other 
conductor. The conductors are equipotential surfaces and the field lines are perpendicular to 
the conductor surface. If V is the mean potential difference between the conductors, the 

capacitance is given by . Capacitance of a capacitor depends on the geometry of the 
conductor and the permittivity of the medium between them and does not depend on the 
charge or potential difference between conductors. The capacitance can be computed by 

assuming Q(at the same time -Q on the other conductor), first determining using Gauss’s 

theorem and then determining . We illustrate this procedure by taking the 
example of a parallel plate capacitor.
Example: Parallel plate capacitor 

Fig 2.20: Parallel Plate Capacitor

For the parallel plate capacitor shown in the figure 2.20, let each plate has area A and a 
distance h separates the plates. A dielectric of permittivity fills the region between the 
plates. The electric field lines are confined between the plates. We ignore the flux fringing at 
the edges of the plates and charges are assumed to be uniformly distributed over the 

conducting plates with densities and - , .

By Gauss’s theorem we can write, .......................(2.85)

As we have assumed to be uniform and fringing of field is neglected, we see that E is 

constant in the region between the plates and therefore, we can write . Thus, 

for a parallel plate capacitor we have,                                                                  
........................(2.86)
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Series and parallel Connection of capacitors

Capacitors are connected in various manners in electrical circuits; series and parallel 
connections are the two basic ways of connecting capacitors. We compute the equivalent 
capacitance for such connections.

Series Case: Series connection of two capacitors is shown in the figure 2.21. For this case 
we can write,

.......................(2.87)

Fig 2.21: Series Connection of Capacitors

Fig 2.22: Parallel Connection of Capacitors

The same approach may be extended to more than two capacitors connected in series.
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Parallel Case: For the parallel case, the voltages across the capacitors are the same.

The total charge 

Therefore,                                                          .......................(2.88)

Electrostatic Energy and Energy Density

We have stated that the electric potential at a point in an electric field is the amount of work 
required to bring a unit positive charge from infinity (reference of zero potential) to that point. 
To determine the energy that is present in an assembly of charges, let us first determine the 
amount of work required to assemble them. Let us consider a number of discrete charges 
Q1, Q2,......., QN are brought from infinity to their present position one by one. Since initially 
there is no field present, the amount of work done in bring Q1 is zero. Q2 is brought in the 
presence of the field of Q1, the work done W1= Q2V21 where V21 is the potential at the location 
of Q2 due to Q1. Proceeding in this manner, we can write, the total work done

.................................................(2.89)

Had the charges been brought in the reverse order,

.................(2.90)

Therefore,

................(2.91)

Here VIJ represent voltage at the Ith charge location due to Jth charge. Therefore,

Or, ................(2.92)

If instead of discrete charges, we now have a distribution of charges over a volume v then we 
can write,

................(2.93)
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62where is the volume charge density and V represents the potential function.

Since, , we can write

.......................................(2.94)

Using the vector identity,

, we can write

................(2.95)

In the expression , for point charges, since V varies as and D varies as , 

the term V varies as while the area varies as r2. Hence the integral term varies at least 

as and the as surface becomes large (i.e. ) the integral term tends to zero. 

Thus the equation for W reduces to

................(2.96)

, is called the energy density in the electrostatic field.

Poisson’s and Laplace’s Equations

For electrostatic field, we have seen that

..........................................................................................(2.97)

Form the above two equations we can write
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Using vector identity we can write, ................(2.99)

For a simple homogeneous medium, is constant and . Therefore,

................(2.100)

This equation is known as Poisson’s equation. Here we have introduced a new operator, 

( del square), called the Laplacian operator. In Cartesian coordinates, 

...............(2.101)

Therefore, in Cartesian coordinates, Poisson equation can be written as:

...............(2.102)

In cylindrical coordinates,

...............(2.103)

In spherical polar coordinate system, 

...............(2.104)

At points in simple media, where no free charge is present, Poisson’s equation reduces to 

                                                              ...................................(2.105)

which is known as Laplace’s equation. 

Laplace’s and Poisson’s equation are very useful for solving many practical electrostatic field 
problems where only the electrostatic conditions (potential and charge) at some boundaries 
are known and solution of electric field and potential is to be found throughout the volume. 
We shall consider such applications in the section where we deal with boundary value 
problems.
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ASSIGNMENT PROBLEMS

1. A charged ring of radius carrying a charge of C/m lies in the x-y plane with its 

centre at the origin and a charge C is placed at the point . Determine 

in terms of and so that a test charge placed at does not experience 
any force. 

2. A semicircular ring of radius lies in the free space and carries a charge density 
C/m. Find the electric field at the centre of the semicircle. 

3. Consider a uniform sphere of charge with charge density and radius b , centered 
at the origin. Find the electric field at a distance r from the origin for the two cases: 
r<b and r>b . Sketch the strength of the electric filed as function of r . 

4. A spherical charge distribution is given by 

is the radius of the sphere. Find the following: 

i. The total charge. 

ii. for and . 

iii. The value of where the becomes maximum. 

5. With reference to the Figure 2.6 determine the potential and field at the point 

if the shaded region contains uniform charge density /m2 .

     FIgure 2.6 

6. A capacitor consists of two coaxial metallic cylinders of length , radius of the inner 

conductor and that of outer conductor . A dielectric material having dielectric 
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65constant , where is the radius, fills the space between the 
conductors. Determine the capacitance of the capacitor. 

7. Determine whether the functions given below satisfy Laplace 's equation 

i) 

ii)

Unit III Magnetostatics

In previous chapters we have seen that an electrostatic field is produced by static or 
stationary charges. The relationship of the steady magnetic field to its sources is much more 

complicated.

The source of steady magnetic field may be a permanent magnet, a direct current or an 
electric field changing with time. In this chapter we shall mainly consider the magnetic field 
produced by a direct current. The magnetic field produced due to time varying electric field 
will be discussed later. Historically, the link between the electric and magnetic field was 
established Oersted in 1820. Ampere and others extended the investigation of magnetic 
effect of electricity . There are two major laws governing the magnetostatic fields are: 

 Biot-Savart Law

 Ampere's Law 

Usually, the magnetic field intensity is represented by the vector . It is customary to 
represent the direction of the magnetic field intensity (or current) by a small circle with a dot 
or cross sign depending on whether the field (or current) is out of or into the page as shown 
in Fig. 4.1. 
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       (or l ) out of the page       (or l ) into the page 

Fig. 4.1: Representation of magnetic field (or current)

Biot- Savart Law 

This law relates the magnetic field intensity dH produced at a point due to a differential 

current element as shown in Fig. 4.2. 

Fig. 4.2: Magnetic field intensity due to a current element

The magnetic field intensity at P can be written as, 

                                    ............................(4.1a)

                                    ..............................................(4.1b)

where is the distance of the current element from the point P. 

Similar to different charge distributions, we can have different current distribution such as line 
current, surface current and volume current. These different types of current densities are 
shown in Fig. 4.3. 
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            Line Current                         Surface Current                          Volume Current 

                        Fig. 4.3: Different types of current distributions

By denoting the surface current density as K (in amp/m) and volume current density as J (in 
amp/m2) we can write: 

......................................(4.2)

( It may be noted that ) 

Employing Biot-Savart Law, we can now express the magnetic field intensity H. In terms of 
these current distributions.
  

          ............................. for line current............................(4.3a)
        

          ........................ for surface current ....................(4.3b)
       

            ....................... for volume current......................(4.3c)

To illustrate the application of Biot - Savart's Law, we consider the following example.

Example 4.1: We consider a finite length of a conductor carrying a current placed along z-
axis as shown in the Fig 4.4. We determine the magnetic field at point P due to this current 
carrying conductor.
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Fig. 4.4: Field at a point P due to a finite length current carrying conductor

With reference to Fig. 4.4, we find that 

                             
.......................................................(4.4)

Applying Biot - Savart's law for the current element

we can write, 

                              
........................................................(4.5)

Substituting we can write, 

                           
.........................(4.6)

We find that, for an infinitely long conductor carrying a current I , and 

Therefore,   .........................................................................................(4.7)

Ampere's Circuital Law: 

Ampere's circuital law states that the line integral of the magnetic field (circulation of H ) 
around a closed path is the net current enclosed by this path. Mathematically, 
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                                 ......................................(4.8)

The total current I enc can be written as, 
           

                                 ......................................(4.9)                     
By applying Stoke's theorem, we can write 

                                  

                                  ......................................(4.10) 
which is the Ampere's law in the point form.

Applications of Ampere's law: 

We illustrate the application of Ampere's Law with some examples. 

Example 4.2: We compute magnetic field due to an infinitely long thin current carrying 
conductor as shown in Fig. 4.5. Using Ampere's Law, we consider the close path to be a 

circle of radius as shown in the Fig. 4.5. 

If we consider a small current element , is perpendicular to the plane 

containing both and . Therefore only component of that will be present is 

,i.e., . 

By applying Ampere's law we can write, 

                                        
......................................(4.11)   

Therefore,   which is same as equation (4.7)    
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Fig. 4.5: Magnetic field due to an infinite thin current carrying conductor

Example 4.3: We consider the cross section of an infinitely long coaxial conductor, the inner
conductor carrying a current I and outer conductor carrying current - I as shown in figure 4.6. 

We compute the magnetic field as a function of as follows: 

In the region 

......................................(4.12) 

............................(4.13)

In the region   

......................................(4.14) 
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                            Fig. 4.6: Coaxial conductor carrying equal and opposite 

currents

In the region 

                              ......................................(4.15) 

                              ........................................(4.16) 

In the region 
   

                              ......................................(4.17)    
Magnetic Flux Density: 

In simple matter, the magnetic flux density related to the magnetic field intensity as 

where called the permeability. In particular when we consider the free space 

where H/m is the permeability of the free space. Magnetic flux 
density is measured in terms of Wb/m 2 . 

The magnetic flux density through a surface is given by: 

  Wb     ......................................(4.18)   

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net 
flux passing through the surface is equal to the charge enclosed by the surface. In case of 
magnetic field isolated magnetic charge (i. e. pole) does not exist. Magnetic poles always 
occur in pair (as N-S). For example, if we desire to have an isolated magnetic pole by 
dividing the magnetic bar successively into two, we end up with pieces each having north (N) 
and south (S) pole as shown in Fig. 4.7 (a). This process could be continued until the 
magnets are of atomic dimensions; still we will have N-S pair occurring together. This means 
that the magnetic poles cannot be isolated.   
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Fig. 4.7: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current 
carrying conductor

Similarly if we consider the field/flux lines of a current carrying conductor as shown in Fig. 4.7 
(b), we find that these lines are closed lines, that is, if we consider a closed surface, the 
number of flux lines that would leave the surface would be same as the number of flux lines 
that would enter the surface. 

From our discussions above, it is evident that for magnetic field, 

......................................(4.19)

which is the Gauss's law for the magnetic field. 

By applying divergence theorem, we can write: 

  

Hence,                               ......................................(4.20)      

which is the Gauss's law for the magnetic field in point form. 

Magnetic Scalar and Vector Potentials: 

In studying electric field problems, we introduced the concept of electric potential that 
simplified the computation of electric fields for certain types of problems. In the same manner 
let us relate the magnetic field intensity to a scalar magnetic potential and write: 
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From Ampere's law , we know that 

......................................(4.22) 

Therefore, ............................(4.23) 

But using vector identity, we find that is valid only where . 

Thus the scalar magnetic potential is defined only in the region where . Moreover, Vm

in general is not a single valued function of position. 

This point can be illustrated as follows. Let us consider the cross section of a coaxial line as 
shown in fig 4.8. 

In the region ,   and 

     Fig. 4.8: Cross Section of a Coaxial Line 

If Vm is the magnetic potential then,
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If we set Vm = 0 at then c=0 and 

We observe that as we make a complete lap around the current carrying conductor , we 

reach again but Vm this time becomes 

We observe that value of Vm keeps changing as we complete additional laps to pass through 
the same point. We introduced Vm analogous to electostatic potential V. But for static electric 

fields, and , whereas for steady magnetic field wherever 

but even if along the path of integration. 

We now introduce the vector magnetic potential which can be used in regions where 
current density may be zero or nonzero and the same can be easily extended to time varying 
cases. The use of vector magnetic potential provides elegant ways of solving EM field 
problems. 

Since and we have the vector identity that for any vector , , we can 

write . 

Here, the vector field is called the vector magnetic potential. Its SI unit is Wb/m. Thus if 

can find of a given current distribution, can be found from through a curl operation. 

We have introduced the vector function and related its curl to . A vector function is 

defined fully in terms of its curl as well as divergence. The choice of is made as follows.

...........................................(4.24)

By using vector identity, .................................................(4.25)

.........................................(4.26)   
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Putting , we get which is vector poisson equation. 
In Cartesian coordinates, the above equation can be written in terms of the components as 

......................................(4.27a) 

......................................(4.27b) 

......................................(4.27c) 

The form of all the above equation is same as that of 

..........................................(4.28)

for which the solution is

..................(4.29) 

In case of time varying fields we shall see that , which is known as Lorentz 
condition, V being the electric potential. Here we are dealing with static magnetic field, so 

. 

By comparison, we can write the solution for Ax as 

...................................(4.30) 

Computing similar solutions for other two components of the vector potential, the vector 
potential can be written as

.......................................(4.31) 

This equation enables us to find the vector potential at a given point because of a volume 

current density . Similarly for line or surface current density we can write
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...................................................(4.32) 

                          respectively. ..............................(4.33) 

The magnetic flux through a given area S is given by       

                                     .............................................(4.34)     

Substituting     
         

                         .........................................(4.35) 

Vector potential thus have the physical significance that its integral around any closed path is 
equal to the magnetic flux passing through that path. 

Boundary Condition for Magnetic Fields: 

Similar to the boundary conditions in the electro static fields, here we will consider the 

behavior of and at the interface of two different media. In particular, we determine how 
the tangential and normal components of magnetic fields behave at the boundary of two 
regions having different permeabilities.

The figure 4.9 shows the interface between two media having permeabities and , 
being the normal vector from medium 2 to medium 1. 

                                             Figure 4.9: Interface between two magnetic media

To determine the condition for the normal component of the flux density vector , we 
consider a small pill box P with vanishingly small thickness h and having an elementary area 
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for the faces. Over the pill box, we can write

                                       ....................................................(4.36) 

Since h --> 0, we can neglect the flux through the sidewall of the pill box.                       
              

                                       ...........................(4.37) 

                                       and ..................(4.38) 

                                      
where 

                                     and ..........................(4.39) 

Since is small, we can write 

                         

or,                          ...................................(4.40) 

That is, the normal component of the magnetic flux density vector is continuous across the 
interface. 

In vector form, 

                         ...........................(4.41) 

To determine the condition for the tangential component for the magnetic field, we consider a 
closed path C as shown in figure 4.8. By applying Ampere's law we can write 

                         ....................................(4.42) 

Since h -->0,

                                       ...................................(4.43) 
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(R.H. rule). Here is tangential to the interface and is the vector 
perpendicular to the surface enclosed by C at the interface

The above equation can be written as 

                                     

or,                                          ...................................(4.44)       
    
i.e., tangential component of magnetic field component is discontinuous across the interface 
where a free surface current exists.    

If Js = 0, the tangential magnetic field is also continuous. If one of the medium is a perfect 
conductor Js exists on the surface of the perfect conductor.

In vector form we can write,

  ...................................(4.45)

Therefore,    

                 ...................................(4.46)

ASSIGNMENT PROBLEMS

1. An infinitely long conductor carries a current I A is bent into an L shape and placed 
as shown in Fig. P.4.7. Determine the magnetic field intensity at a point P (0,0, a). 
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Figure P.4.7

2. Consider a long filamentary carrying a current IA in the + Z direction. Calculate the 
magnetic field intensity at point O (- a , a ,0). Also determine the flux through this 

region described by and .
3. A very long air cored solenoid is to produce an inductance 0.1H/m. If the member of 

turns per unit length is 1000/m. Determine the diameter of this turns of the solenoid. 
4. Determine the force per unit length between two infinitely long conductor each 

carrying current IA and the conductor are separated by a distance ? d '. 

                  

Unit IV     Electrodynamic fields

Introduction:

In our study of static fields so far, we have observed that static electric fields are produced by 
electric charges, static magnetic fields are produced by charges in motion or by steady 
current. Further, static electric field is a conservative field and has no curl, the static 
magnetic field is continuous and its divergence is zero. The fundamental relationships for 
static electric fields among the field quantities can be summarized as:

                           (5.1a)

                           (5.1b)

For a linear and isotropic medium,

                              (5.1c)

Similarly for the magnetostatic case
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80                              (5.2a)

                           (5.2b)

                              (5.2c) 

It can be seen that for static case, the electric field vectors and and magnetic field 

vectors and form separate pairs.

In this chapter we will consider the time varying scenario. In the time varying case we will 
observe that a changing magnetic field will produce a changing electric field and vice versa. 

We begin our discussion with Faraday's Law of electromagnetic induction and then present 
the Maxwell's equations which form the foundation for the electromagnetic theory. 

Faraday's Law of electromagnetic Induction

Michael Faraday, in 1831 discovered experimentally that a current was induced in a 
conducting loop when the magnetic flux linking the loop changed. In terms of fields, we can 
say that a time varying magnetic field produces an electromotive force (emf) which causes a 
current in a closed circuit. The quantitative relation between the induced emf (the voltage 
that arises from conductors moving in a magnetic field or from changing magnetic fields) and 
the rate of change of flux linkage developed based on experimental observation is known as 
Faraday's law. Mathematically, the induced emf can be written as 

Emf =     Volts                           (5.3) 

where is the flux linkage over the closed path.

A non zero may result due to any of the following: 

(a) time changing flux linkage a stationary closed path.

(b) relative motion between a steady flux a closed path. 

(c) a combination of the above two cases.

The negative sign in equation (5.3) was introduced by Lenz in order to comply with the 
polarity of the induced emf. The negative sign implies that the induced emf will cause a 
current flow in the closed loop in such a direction so as to oppose the change in the linking 
magnetic flux which produces it. (It may be noted that as far as the induced emf is 
concerned, the closed path forming a loop does not necessarily have to be conductive). 
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If the closed path is in the form of N tightly wound turns of a coil, the change in the magnetic 
flux linking the coil induces an emf in each turn of the coil and total emf is the sum of the 
induced emfs of the individual turns, i.e., 

Emf =      Volts                                (5.4)

By defining the total flux linkage as 

                                        (5.5)

The emf can be written as 

Emf =                                 (5.6)

Continuing with equation (5.3), over a closed contour 'C' we can write

Emf =                               (5.7)

where is the induced electric field on the conductor to sustain the current.

Further, total flux enclosed by the contour 'C ' is given by 

                                         (5.8)

Where S is the surface for which 'C' is the contour. 

From (5.7) and using (5.8) in (5.3) we can write

                        (5.9)

By applying stokes theorem

                        (5.10)

Therefore, we can write 

                                        (5.11)
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which is the Faraday's law in the point form 

We have said that non zero can be produced in a several ways. One particular case is 
when a time varying flux linking a stationary closed path induces an emf. The emf induced in 
a stationary closed path by a time varying magnetic field is called a transformer emf .

Example: Ideal transformer 

As shown in figure 5.1, a transformer consists of two or more numbers of coils coupled 
magnetically through a common core. Let us consider an ideal transformer whose winding 
has zero resistance, the core having infinite permittivity and magnetic losses are zero. 

                                                     Fig 5.1: Transformer with secondary open

These assumptions ensure that the magnetization current under no load condition is 
vanishingly small and can be ignored. Further, all time varying flux produced by the primary 
winding will follow the magnetic path inside the core and link to the secondary coil without 
any leakage. If N1 and N2 are the number of turns in the primary and the secondary windings 
respectively, the induced emfs are 

                                (5.12a) 

                                 (5.12b)

(The polarities are marked, hence negative sign is omitted. The induced emf is +ve at the 
dotted end of the winding.) 

                                  (5.13)
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i.e., the ratio of the induced emfs in primary and secondary is equal to the ratio of their turns. 
Under ideal condition, the induced emf in either winding is equal to their voltage rating. 

                                (5.14)

where 'a' is the transformation ratio. When the secondary winding is connected to a load, the 
current flows in the secondary, which produces a flux opposing the original flux. The net flux 
in the core decreases and induced emf will tend to decrease from the no load value. This 
causes the primary current to increase to nullify the decrease in the flux and induced emf. 
The current continues to increase till the flux in the core and the induced emfs are restored to 
the no load values. Thus the source supplies power to the primary winding and the 
secondary winding delivers the power to the load. Equating the powers

                                     (5.15)

                       (5.16)

Further, 

                              (5.17)

i.e., the net magnetomotive force (mmf) needed to excite the transformer is zero under ideal 
condition. 

Motional EMF:

Let us consider a conductor moving in a steady magnetic field as shown in the fig 5.2.

Fig 5.2

If a charge Q moves in a magnetic field , it experiences a force

                                        (5.18)
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This force will cause the electrons in the conductor to drift towards one end and leave the 
other end positively charged, thus creating a field and charge separation continuous until 
electric and magnetic forces balance and an equilibrium is reached very quickly, the net 
force on the moving conductor is zero. 

can be interpreted as an induced electric field which is called the motional electric 
field 

                                   (5.19)

If the moving conductor is a part of the closed circuit C, the generated emf around the circuit 

is . This emf is called the motional emf.

A classic example of motional emf is given in Additonal Solved Example No.1 .

Maxwell's Equation 

Equation (5.1) and (5.2) gives the relationship among the field quantities in the static field. 
For time varying case, the relationship among the field vectors written as

                  (5.20a)

                        (5.20b)

                           (5.20c)

                            (5.20d)

In addition, from the principle of conservation of charges we get the equation of continuity 

                                                                                        (5.21) 
The equation 5.20 (a) - (d) must be consistent with equation (5.21). 

We observe that 

                                (5.22)

Since is zero for any vector . 

Thus applies only for the static case i.e., for the scenario when .
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A classic example for this is given below .

Suppose we are in the process of charging up a capacitor as shown in fig 5.3. 

Fig 5.3

Let us apply the Ampere's Law for the Amperian loop shown in fig 5.3. Ienc = I is the total 
current passing through the loop. But if we draw a baloon shaped surface as in fig 5.3, no 
current passes through this surface and hence Ienc = 0. But for non steady currents such as 
this one, the concept of current enclosed by a loop is ill-defined since it depends on what 
surface you use. In fact Ampere's Law should also hold true for time varying case as well, 
then comes the idea of displacement current which will be introduced in the next few slides.

We can write for time varying case, 

                                                                                                      (5.23) 

                        (5.24) 

The equation (5.24) is valid for static as well as for time varying case.

Equation (5.24) indicates that a time varying electric field will give rise to a magnetic field 

even in the absence of . The term has a dimension of current densities and is 
called the displacement current density.

Introduction of in equation is one of the major contributions of Jame's Clerk 
Maxwell. The modified set of equations 
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                             (5.25a)

                         (5.25b) 

                                  (5.25c) 

                                 (5.25d)

is known as the Maxwell's equation and this set of equations apply in the time varying 

scenario, static fields are being a particular case .

In the integral form 

                                              (5.26a)

              (5.26b)

                                 (5.26c) 

                             (5.26d) 

The modification of Ampere's law by Maxwell has led to the development of a unified 
electromagnetic field theory. By introducing the displacement current term, Maxwell could 
predict the propagation of EM waves. Existence of EM waves was later demonstrated by 
Hertz experimentally which led to the new era of radio communication.

Boundary Conditions for Electromagnetic fields 

The differential forms of Maxwell's equations are used to solve for the field vectors provided 
the field quantities are single valued, bounded and continuous. At the media boundaries, the 
field vectors are discontinuous and their behaviors across the boundaries are governed by 
boundary conditions. The integral equations(eqn 5.26) are assumed to hold for regions 
containing discontinuous media.Boundary conditions can be derived by applying the 
Maxwell's equations in the integral form to small regions at the interface of the two media. 
The procedure is similar to those used for obtaining boundary conditions for static electric 
fields (chapter 2) and static magnetic fields (chapter 4). The boundary conditions are 
summarized as follows 
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With reference to fig 5.3 

Fig 5.4

Equation 5.27 (a) says that tangential component of electric field is continuous across the 
interface while from 5.27 (c) we note that tangential component of the magnetic field is 
discontinuous by an amount equal to the surface current density. Similarly 5.27 (b) states 

that normal component of electric flux density vector is discontinuous across the interface 
by an amount equal to the surface current density while normal component of the magnetic 
flux density is continuous. 
If one side of the interface, as shown in fig 5.4, is a perfect electric conductor, say region 2, a 

surface current can exist even though is zero as .
Thus eqn 5.27(a) and (c) reduces to 

Wave equation and their solution: 

From equation 5.25 we can write the Maxwell's equations in the differential form as 
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Let us consider a source free uniform medium having dielectric constant , magnetic 

permeability and conductivity . The above set of equations can be written as 

Using the vector identity ,

We can write from 5.29(b) 

or     

Substituting from 5.29(a) 

But in source free medium (eqn 5.29(c)) 

                          (5.30)

In the same manner for equation eqn 5.29(a) 
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Since from eqn 5.29(d), we can write 

                          (5.31)

These two equations 

are known as wave equations.

It may be noted that the field components are functions of both space and time. For example, 

if we consider a Cartesian co ordinate system, essentially represents 

and . For simplicity, we consider propagation in free space , i.e. ,

and . The wave eqn in equations 5.30 and 5.31 reduces to 

Further simplifications can be made if we consider in Cartesian co ordinate system a special 

case where are considered to be independent in two dimensions, say are 
assumed to be independent of y and z. Such waves are called plane waves. 

From eqn (5.32 (a)) we can write 

http://learnengineering.in


90

The vector wave equation is equivalent to the three scalar equations

Since we have ,

As we have assumed that the field components are independent of y and z eqn (5.34) 
reduces to 

                              (5.35)

i.e. there is no variation of Ex in the x direction. 

Further, from 5.33(a), we find that implies which requires any three of the 
conditions to be satisfied: (i) Ex=0, (ii)Ex = constant, (iii)Ex increasing uniformly with time. 

A field component satisfying either of the last two conditions (i.e (ii) and (iii))is not a part of a 
plane wave motion and hence Ex is taken to be equal to zero. Therefore, a uniform plane 
wave propagating in x direction does not have a field component (E or H) acting along x. 

Without loss of generality let us now consider a plane wave having Ey component only 
(Identical results can be obtained for Ez component) . 

The equation involving such wave propagation is given by 
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The above equation has a solution of the form 

where 

Thus equation (5.37) satisfies wave eqn (5.36) can be verified by substitution. 

corresponds to the wave traveling in the + x direction while 
corresponds to a wave traveling in the -x direction. The general solution of the wave eqn thus 
consists of two waves, one traveling away from the source and other traveling back towards 
the source. In the absence of any reflection, the second form of the eqn (5.37) is zero and 
the solution can be written as 

                  (5.38)

Such a wave motion is graphically shown in fig 5.5 at two instances of time t1 and t2. 

Fig 5.5 : Traveling wave in 
the + x direction 

Let us now consider the relationship between E and H components for the forward traveling 
wave.

Since and there is no variation along y and z.

http://learnengineering.in


92Since only z component of exists, from (5.29(b)) 

                      (5.39) 

and from (5.29(a)) with , only Hz component of magnetic field being present

                        (5.40)

Substituting Ey from (5.38) 

The constant of integration means that a field independent of x may also exist. However, this 
field will not be a part of the wave motion. 

Hence                         (5.41)

which relates the E and H components of the traveling wave.
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is called the characteristic or intrinsic impedance of the free space

ASSIGNMENT PROBLEMS

1. A rectangular loop of area rotates at rad/s in a magnetic fields of B 
Wb/m2 normal to the axis of rotation. If the loop has N turns determine the induced 
voltage in the loop. 

2. If the electric field component in a nonmagnetic dielectric medium is given by 

determine the dielectric constant and the corresponding .

3. A vector field in phasor form is given by 

Express in instantaneous form. 

Unit V   Electromagnetic waves

In the previous chapter we introduced the equations pertaining to wave propagation and 
discussed how the wave equations are modified for time harmonic case. In this chapter we 
discuss in detail a particular form of electromagnetic wave propagation called 'plane waves'.
The Helmhotz Equation: 

    In source free linear isotropic medium, Maxwell equations in phasor form are,

              

or, 

or, 
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An identical equation can be derived for .

i.e., 

    These equations 

    are called homogeneous vector Helmholtz's equation. 

    is called the wave number or propagation constant of the medium. 

Plane waves in Lossless medium: 

In a lossless medium, are real numbers, so k is real. 

In Cartesian coordinates each of the equations 6.1(a) and 6.1(b) are equivalent to three 
scalar Helmholtz's equations, one each in the components Ex, Ey and Ez or Hx , Hy, Hz.

For example if we consider Ex component we can write 

.................................................(6.2)

A uniform plane wave is a particular solution of Maxwell's equation assuming electric field 
(and magnetic field) has same magnitude and phase in infinite planes perpendicular to the 
direction of propagation. It may be noted that in the strict sense a uniform plane wave 
doesn't exist in practice as creation of such waves are possible with sources of infinite 
extent. However, at large distances from the source, the wavefront or the surface of the 
constant phase becomes almost spherical and a small portion of this large sphere can be 
considered to plane. The characteristics of plane waves are simple and useful for studying 
many practical scenarios. 

Let us consider a plane wave which has only Ex component and propagating along z . Since 
the plane wave will have no variation along the plane perpendicular to z i.e., xy plane, 

. The Helmholtz's equation (6.2) reduces to,

.........................................................................(6.3)
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    The solution to this equation can be written as 

............................................................(6.4)

    are the amplitude constants (can be determined from boundary conditions).

In the time domain, 

.............................(6.5)

    assuming are real constants.

    Here, represents the forward traveling wave. The plot of 

for several values of t is shown in the Figure 6.1. 

Figure 6.1: Plane wave traveling in the + z direction

As can be seen from the figure, at successive times, the wave travels in the +z direction. 

If we fix our attention on a particular point or phase on the wave (as shown by the dot) i.e. , 

= constant    

Then we see that as t is increased to , z also should increase to so that 
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Or, 

Or, 

When , 

    we write = phase velocity .

.....................................(6.6)

    If the medium in which the wave is propagating is free space i.e., 

    Then 

    Where 'C' is the speed of light. That is plane EM wave travels in free space with the speed 
of light. 

The wavelength is defined as the distance between two successive maxima (or minima or 
any other reference points). 

i.e., 

or, 

or, 

    Substituting ,

                                   or,   ................................(6.7)
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Thus wavelength also represents the distance covered in one oscillation of the wave. 

Similarly, represents a plane wave traveling in the -z direction. 

   The associated magnetic field can be found as follows: 

    From (6.4), 

= 

                = ............(6.8)

  where is the intrinsic impedance of the medium.

    When the wave travels in free space 

    is the intrinsic impedance of the free space. 

In the time domain, 

........... (6.9) 

Which represents the magnetic field of the wave traveling in the +z direction. 

For the negative traveling wave, 
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...........(6.10)

For the plane waves described, both the E & H fields are perpendicular to the direction of 
propagation, and these waves are called TEM (transverse electromagnetic) waves. 

The E & H field components of a TEM wave is shown in Fig 6.2. 

Figure 6.2 : E & H fields of a particular plane wave at time t. 

TEM Waves: 

So far we have considered a plane electromagnetic wave propagating in the z-direction. Let 
us now consider the propagation of a uniform plane wave in any arbitrary direction that 
doesn't necessarily coincides with an axis. 

For a uniform plane wave propagating in z-direction 

is a constant vector........................... (6.11) 

The more general form of the above equation is 

........................................... (6.12) 

This equation satisfies Helmholtz's equation provided, 

........................... (6.13) 
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And radius vector from the origin 

........................... (6.15) 

Therefore we can write 

........................... (6.16) 

Here =constant is a plane of constant phase and uniform amplitude just in the case of 

,

z =constant denotes a plane of constant phase and uniform amplitude. 

If the region under consideration is charge free, 

Using the vector identity and noting that is constant we can 
write, 

......................(6.17) 

i.e., is transverse to the direction of the propagation. 

The corresponding magnetic field can be computed as follows: 
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Using the vector identity, 

Since is constant we can write, 

.....................(6.18) 

Where is the intrinsic impedance of the medium. We observe that is perpendicular to 

both and . Thus the electromagnetic wave represented by and is a TEM 
wave. 

Plane waves in a lossy medium : 

In a lossy medium, the EM wave looses power as it propagates. Such a medium is 
conducting with conductivity and we can write: 

.....................(6.19) 

Where is called the complex permittivity. 

We have already discussed how an external electric field can polarize a dielectric and give 
rise to bound charges. When the external electric field is time varying, the polarization vector 
will vary with the same frequency as that of the applied field. As the frequency of the applied 
filed increases, the inertia of the charge particles tend to prevent the particle displacement 
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keeping pace with the applied field changes. This results in frictional damping mechanism 
causing power loss. 

In addition, if the material has an appreciable amount of free charges, there will be ohmic 
losses. It is customary to include the effect of damping and ohmic losses in the imaginary 

part of . An equivalent conductivity represents all losses. 

The ratio is called loss tangent as this quantity is a measure of the power loss. 

Fig 6.3 : Calculation of Loss Tangent 

With reference to the Fig 6.3, 

.......................... (6.20) 

where is the conduction current density and is displacement current density. The loss 
tangent gives a measure of how much lossy is the medium under consideration. For a good 

dielectric medium is very small and the medium is a good conductor if 

. A material may be a good conductor at low frequencies but behave as lossy 
dielectric at higher frequencies. 

For a source free lossy medium we can write 

........................... (6.21)
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.................... (6.22) 

Where 

Proceeding in the same manner we can write, 

is called the propagation constant. 

The real and imaginary parts and of the propagation constant can be computed as 
follows:

And 

................... (6.23a) 
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Similarly ................... (6.23b)

Let us now consider a plane wave that has only x -component of electric field and propagate 
along z . 

................................... (6.24) 

Considering only the forward traveling wave 

................................... (6.25) 

Similarly, from , we can find 

..................................... (6.26) 

Where 

..................................... (6.27) 

From (6.25) and (6.26) we find that as the wave propagates along z, it decreases in 

amplitude by a factor . Therefore is known as attenuation constant. Further and 

are out of phase by an angle . 

For low loss dielectric, , i.e., . 

Using the above condition approximate expression for and can be obtained as follows:
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............. (6.29)

& phase velocity 

............... (6.30) 

For good conductors 

= ............... (6.31) 

We have used the relation 

From (6.31) we can write 

............... (6.32) 
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                      ..................... (6.33) 

And phase velocity 

..................... (6.34) 

Poynting Vector and Power Flow in Electromagnetic Fields:

Electromagnetic waves can transport energy from one point to another point. The electric 
and magnetic field intensities asscociated with a travelling electromagnetic wave can be 
related to the rate of such energy transfer. 

Let us consider Maxwell's Curl Equations:

Using vector identity

the above curl equations we can write

http://learnengineering.in


106
.............................................(6.35)

In simple medium where and are constant, we can write

   and   

Applying Divergence theorem we can write,

...........................(6.36)

The term represents the rate of change of energy stored in the 

electric and magnetic fields and the term represents the power dissipation within 
the volume. Hence right hand side of the equation (6.36) represents the total decrease in 
power within the volume under consideration.

The left hand side of equation (6.36) can be written as where 

(W/mt2) is called the Poynting vector and it represents the power density vector 
associated with the electromagnetic field. The integration of the Poynting vector over any 
closed surface gives the net power flowing out of the surface. Equation (6.36) is referred to 
as Poynting theorem and it states that the net power flowing out of a given volume is equal to 
the time rate of decrease in the energy stored within the volume minus the conduction 
losses.

Poynting vector for the time harmonic case:

For time harmonic case, the time variation is of the form , and we have seen that 

instantaneous value of a quantity is the real part of the product of a phasor quantity and 
when is used as reference. For example, if we consider the phasor
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then we can write the instanteneous field as

.................................(6.37)

when E0 is real.
Let us consider two instanteneous quantities A and B such that

where A and B are the phasor quantities.

i.e,

Therefore,

..............................(6.39)

Since A and B are periodic with period , the time average value of the product form 

AB, denoted by can be written as

.....................................(6.40)

Further, considering the phasor quantities A and B, we find that
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and , where * denotes complex conjugate. 

..............................................(6.41)

The poynting vector can be expressed as

...................................(6.42)

If we consider a plane electromagnetic wave propagating in +z direction and has only 
component, from (6.42) we can write:

Using (6.41) 

........................................(6.43)

where and , for the plane wave under consideration.

For a general case, we can write

.....................(6.44)

We can define a complex Poynting vector

and time average of the instantaneous Poynting vector is given by .

Polarisation of plane wave:
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The polarisation of a plane wave can be defined as the orientation of the electric field vector 
as a function of time at a fixed point in space. For an electromagnetic wave, the specification 
of the orientation of the electric field is sufficent as the magnetic field components are related 
to electric field vector by the Maxwell's equations.

Let us consider a plane wave travelling in the +z direction. The wave has both Ex and Ey

components.

..........................................(6.45)

The corresponding magnetic fields are given by,

Depending upon the values of Eox and Eoy we can have several possibilities:

1. If Eoy = 0, then the wave is linearly polarised in the x-direction.

2. If Eoy = 0, then the wave is linearly polarised in the y-direction.

3. If Eox and Eoy are both real (or complex with equal phase), once again we get a linearly 

polarised wave with the axis of polarisation inclined at an angle , with respect to 
the x-axis. This is shown in fig 6.4.
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Fig 6.4 : Linear Polarisation 

4. If Eox and Eoy are complex with different phase angles, will not point to a single spatial 
direction. This is explained as follows:

Let 

Then, 

and ....................................(6.46)

To keep the things simple, let us consider a =0 and . Further, let us study the nature of 
the electric field on the z =0 plain.

From equation (6.46) we find that,
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.....................................(6.47)

and the electric field vector at z = 0 can be written as

.............................................(6.48)

Assuming , the plot of for various values of t is hown in figure 6.5.

Figure 6.5 : Plot of E(o,t) 

From equation (6.47) and figure (6.5) we observe that the tip of the arrow representing 
electric field vector traces qn ellipse and the field is said to be elliptically polarised.
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Figure 6.6: Polarisation ellipse 

The polarisation ellipse shown in figure 6.6 is defined by its axial ratio(M/N, the ratio of 

semimajor to semiminor axis), tilt angle (orientation with respect to xaxis) and sense of 
rotation(i.e., CW or CCW).

Linear polarisation can be treated as a special case of elliptical polarisation, for which the 
axial ratio is infinite.

In our example, if , from equation (6.47), the tip of the arrow representing electric 
field vector traces out a circle. Such a case is referred to as Circular Polarisation. For circular 
polarisation the axial ratio is unity.

Figure 6.7: Circular Polarisation (RHCP)
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Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) if 
the electric field vector rotates in the direction of the fingers of the right hand when the thumb 
points in the direction of propagation-(same and CCW). If the electric field vector rotates in 
the opposite direction, the polarisation is asid to be left hand circular polarisation (LHCP) 
(same as CW).

In AM radio broadcast, the radiated electromagnetic wave is linearly polarised with the 
field vertical to the ground( vertical polarisation) where as TV signals are horizontally 
polarised waves. FM broadcast is usually carried out using circularly polarised waves.

In radio communication, different information signals can be transmitted at the same 
frequency at orthogonal polarisation ( one signal as vertically polarised other horizontally 
polarised or one as RHCP while the other as LHCP) to increase capacity. Otherwise, same 
signal can be transmitted at orthogonal polarisation to obtain diversity gain to improve 
reliability of transmission. 

Behaviour of Plane waves at the inteface of two media:

We have considered the propagation of uniform plane waves in an unbounded 
homogeneous medium. In practice, the wave will propagate in bounded regions where 

several values of will be present. When plane wave travelling in one medium meets a 
different medium, it is partly reflected and partly transmitted. In this section, we consider 
wave reflection and transmission at planar boundary between two media.

Fig 6.8 : Normal Incidence at a plane boundary

Case1: Let z = 0 plane represent the interface between two media. Medium 1 is 

characterised by and medium 2 is characterized by .
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Let the subscripts 'i' denotes incident, 'r' denotes reflected and 't' denotes transmitted field 
components respectively.

The incident wave is assumed to be a plane wave polarized along x and travelling in medium 

1 along direction. From equation (6.24) we can write

..................(6.49.a)

......................(6.49.b)

where and .

Because of the presence of the second medium at z =0, the incident wave will undergo 
partial reflection and partial transmission.

The reflected wave will travel along in medium 1.

The reflected field components are:

...............................................(6.50a)

.........(6.50b)

The transmitted wave will travel in medium 2 along for which the field components are 

............................................(6.51a)

............................................(6.51b)

where and 
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In medium 1,

and 

and in medium 2,

and 

Applying boundary conditions at the interface z = 0, i.e., continuity of tangential field 
components and noting that incident, reflected and transmitted field components are 
tangential at the boundary, we can write

& 

From equation 6.49 to 6.51 we get,

................................................................(6.52a)

..............................................................(6.52b)

Eliminating Eto ,

or, 

or, 

                    ...............(6.53)

is called the reflection coefficient.

From equation (6.52), we can write

http://learnengineering.in


116

or, 

........................................(6.54)

is called the transmission coefficient.

We observe that,

........................................(6.55)

The following may be noted

(i) both and T are dimensionless and may be complex

(ii) 

Let us now consider specific cases:

Case I: Normal incidence on a plane conducting boundary 

The medium 1 is perfect dielectric and medium 2 is perfectly conducting .

From (6.53) and (6.54)

= -1

and T =0
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Hence the wave is not transmitted to medium 2, it gets reflected entirely from the interface to 
the medium 1.

& .................................(6.56)

Proceeding in the same manner for the magnetic field in region 1, we can show that,

...................................................................................(6.57)

The wave in medium 1 thus becomes a standing wave due to the super position of a 

forward travelling wave and a backward travelling wave. For a given ' t', both and vary 
sinusoidally with distance measured from z = 0. This is shown in figure 6.9. 

Figure 6.9: Generation of standing wave

Zeroes of E1(z,t) and Maxima of H1(z,t).

Maxima of E1(z,t) and zeroes of H1(z,t). 
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             .......(6.58) 

Case2: Normal incidence on a plane dielectric boundary 

If the medium 2 is not a perfect conductor (i.e. ) partial reflection will result. There will 
be a reflected wave in the medium 1 and a transmitted wave in the medium 2.Because of the 
reflected wave, standing wave is formed in medium 1. 

From equation (6.49(a)) and equation (6.53) we can write 

..................(6.59)

Let us consider the scenario when both the media are dissipation less i.e. perfect dielectrics ( 

)

    ..................(6.60)

In this case both and become real numbers. 

..................(6.61)
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From (6.61), we can see that, in medium 1 we have a traveling wave component with 
amplitude TEio and a standing wave component with amplitude 2JEio. 

The location of the maximum and the minimum of the electric and magnetic field components 
in the medium 1from the interface can be found as follows. 

The electric field in medium 1 can be written as 

..................(6.62)

If i.e. >0 

The maximum value of the electric field is 

..................(6.63)

and this occurs when 

or  ,   n = 0, 1, 2, 3.......................(6.64)

The minimum value of is 

.................(6.65)

And this occurs when 

or , n = 0, 1, 2, 3.............................(6.66)

For i.e. <0

The maximum value of is which occurs at the zmin locations and the minimum 

value of is which occurs at zmax locations as given by the equations (6.64) and 
(6.66).
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From our discussions so far we observe that can be written as 

.................(6.67)

The quantity S is called as the standing wave ratio. 

As the range of S is given by 

From (6.62), we can write the expression for the magnetic field in medium 1 as 

.................(6.68)

From (6.68) we find that will be maximum at locations where is minimum and vice 
versa. 
In medium 2, the transmitted wave propagates in the + z direction. 

Oblique Incidence of EM wave at an interface 

So far we have discuss the case of normal incidence where electromagnetic wave traveling 
in a lossless medium impinges normally at the interface of a second medium. In this section 
we shall consider the case of oblique incidence. As before, we consider two cases 

i. When the second medium is a perfect conductor. 
ii. When the second medium is a perfect dielectric. 

A plane incidence is defined as the plane containing the vector indicating the direction of 
propagation of the incident wave and normal to the interface. We study two specific cases 

when the incident electric field is perpendicular to the plane of incidence (perpendicular 

polarization) and is parallel to the plane of incidence (parallel polarization). For a general 
case, the incident wave may have arbitrary polarization but the same can be expressed as a 
linear combination of these two individual cases. 

Oblique Incidence at a plane conducting boundary 

i. Perpendicular Polarization 

The situation is depicted in figure 6.10.
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Figure 6.10: Perpendicular Polarization 

As the EM field inside the perfect conductor is zero, the interface reflects the incident plane 

wave. and respectively represent the unit vector in the direction of propagation of the 

incident and reflected waves, is the angle of incidence and is the angle of reflection. 

We find that 

............................(6.69)

Since the incident wave is considered to be perpendicular to the plane of incidence, which 
for the present case happens to be xz plane, the electric field has only y-component. 

Therefore, 

The corresponding magnetic field is given by 

...........................(6.70)

Similarly, we can write the reflected waves as 
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...................................................(6.71)

Since at the interface z=o, the tangential electric field is zero. 

............................................(6.72)

Consider in equation (6.72) is satisfied if we have 

..................................(6.73) 

The condition is Snell's law of reflection. 

..................................(6.74)

  ..................................(6.75)

The total electric field is given by 

..................................(6.76)

Similarly, total magnetic field is given by 

.............................(6.77)

From eqns (6.76) and (6.77) we observe that 

1. Along z direction i.e. normal to the boundary 

y component of and x component of maintain standing wave patterns according 

to and where . No average power propagates along z 

as y component of and x component of are out of phase. 
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2. Along x i.e. parallel to the interface 

y component of and z component of are in phase (both time and space) and 
propagate with phase velocity

.............................(6.78)

The wave propagating along the x direction has its amplitude varying with z and hence 

constitutes a non uniform plane wave. Further, only electric field is perpendicular to the 
direction of propagation (i.e. x), the magnetic field has component along the direction of 
propagation. Such waves are called transverse electric or TE waves. 

ii. Parallel Polarization: 

In this case also and are given by equations (6.69). Here and have only y 
component. 

Figure 6.11: Parallel Polarization 

With reference to fig (6.11), the field components can be written as: 

Incident field components: 

............................(6.79) 
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Reflected field components: 

............................(6.80) 

Since the total tangential electric field component at the interface is zero. 

Which leads to and as before. 

Substituting these quantities in (6.79) and adding the incident and reflected electric and 
magnetic field components the total electric and magnetic fields can be written as

...........................(6.81) 

Once again, we find a standing wave pattern along z for the x and y components of and 

, while a non uniform plane wave propagates along x with a phase velocity given by 

where . Since, for this propagating wave, magnetic field is in 
transverse direction, such waves are called transverse magnetic or TM waves. 

Oblique incidence at a plane dielectric interface 

We continue our discussion on the behavior of plane waves at an interface; this time we 
consider a plane dielectric interface. As earlier, we consider the two specific cases, namely 
parallel and perpendicular polarization. 
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Fig 6.12: Oblique incidence at a plane dielectric interface

For the case of a plane dielectric interface, an incident wave will be reflected partially and 
transmitted partially. 

In Fig(6.12), corresponds respectively to the angle of incidence, reflection and 
transmission. 

1. Parallel Polarization 

As discussed previously, the incident and reflected field components can be written as 

..........................(6.82) 

..........................(6.83)

In terms of the reflection coefficient 

..........................(6.84)

The transmitted filed can be written in terms of the transmission coefficient T
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..........................(6.85)

We can now enforce the continuity of tangential field components at the boundary i.e. z=0 

..........................(6.86)

If both and are to be continuous at z=0 for all x , then form the phase matching we 
have 

We find that 

..........................(6.87)

Further, from equations (6.86) and (6.87) we have 

..........................(6.88)
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or ..........................(6.89)

..........................(6.90)

From equation (6.90) we find that there exists specific angle for which = 0 such that 

or .........................(6.91) 

Further,                                           .........................(6.92) 

For non magnetic material 
Using this condition 

.........................(6.93) 

From equation (6.93), solving for we get 

This angle of incidence for which = 0 is called Brewster angle. Since we are dealing with 

parallel polarization we represent this angle by so that 

http://learnengineering.in


128
2. Perpendicular Polarization 

For this case 

.........................(6.94) 

.........................(6.95)

.........................(6.96) 

Using continuity of field components at z=0

.........................(6.97) 

As in the previous case 

.........................(6.98) 

Using these conditions we can write

.........................(6.99) 

From equation (6.99) the reflection and transmission coefficients for the perpendicular 
polarization can be computed as 
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.........................(6.100) 

We observe that if = 0 for an angle of incidence 

Again 

or 

or 

or .........................(6.101) 

We observe if i.e. in this case of non magnetic material Brewster angle does 
not exist as the denominator or equation (6.101) becomes zero. Thus for perpendicular 

polarization in dielectric media, there is Brewster angle so that can be made equal to zero. 
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From our previous discussion we observe that for both polarizations 

If 

For ; 

The incidence angle for which i.e. is called the critical angle of 

incidence. If the angle of incidence is larger than total internal reflection occurs. For such 
case an evanescent wave exists along the interface in the x direction (w.r.t. fig (6.12)) that 
attenuates exponentially in the normal i.e. z direction. Such waves are tightly bound to the 
interface and are called surface waves. 
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